Fast high precision summation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast High Precision Summation ∗

Given a vector pi of floating-point numbers with exact sum s, we present a new algorithm with the following property: Either the result is a faithful rounding of s, or otherwise the result has a relative error not larger than epsKcond ( ∑ pi) for K to be specified. The statements are also true in the presence of underflow, the computing time does not depend on the exponent range, and no extra m...

متن کامل

Twofold fast summation

Debugging accumulation of floating-point errors is hard; ideally, computer should track it automatically. Here we consider twofold approximation of exact real with value + error pair of floating-point numbers. Normally, value + error sum is more accurate than value alone, so error can estimate deviation between value and its exact target. Fast summation algorithm, that provides twofold sum of ∑...

متن کامل

Ultimately Fast Accurate Summation

We present two new algorithms FastAccSum and FastPrecSum, one to compute a faithful rounding of the sum of floating-point numbers and the other for a result “as if” computed in K-fold precision. Faithful rounding means the computed result either is one of the immediate floating-point neighbors of the exact result or is equal to the exact sum if this is a floating-point number. The algorithms ar...

متن کامل

Fast Algorithms for High-Precision Computation of Elementary Functions

Open problem: Is γ or exp(γ) rational ? Since the regular continued fraction gives best rational approximations, continued fraction computations can give theorems of the form: If x is rational, say x = p/q, then |q| > B for some (very large) bound B. To obtain a result like this with given bound B, we need to compute x with absolute error O(1/B2). Using this method we know that, if γ or exp(γ) ...

متن کامل

Fast weighted summation of erfc functions

Direct computation of the weighted sum of N complementary error functions at M points scales as O(M N). We present a O(M + N)-exact approximation algorithm to compute the same.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Theory and Its Applications, IEICE

سال: 2010

ISSN: 2185-4106

DOI: 10.1587/nolta.1.2